

Introduction

- ▶ HF-jet: in particular *b*-jet, when compared with much more abundant light-parton jet, provide differentiating sensitivity to collision VS radiative energy loss
- Detection technique employed: Jet + jet structure information enhancing B-hadron fraction,
 i.e: displaced track, high mass secondary vertex and enhanced leptonic decay products
- ▶ HF-jet topical group formed in Apr 2016 and initiated Geant4 based b-jet study in sPHENIX. Many progresses in simulation tool, b-jet tagger and studying new observables.
- In the new era of MVTX program, aim to expand the program in HF-meson program (See Xin's talk) and serve the detector consortium of MVTX (See Ming's talk)

Topical group organization

Co-conveners

- Jin Huang (Brookhaven National Lab)<jhuang@bnl.gov>
- Mike McCumber (Los Alamos National Lab)<mccumber@bnl.gov>

- We are very fortune to have a diligent team working on a wide spectrum of high-priority development
 - More manpower are always welcomed and needed!

Communication:

- Discussion email list: https://lists.bnl.gov/mailman/listinfo/sphenix-hf-jets-l
- Wiki page under construction: https://wiki.bnl.gov/sPHENIX/index.php/Heavy Flavor Topical Group

Meetings/Events

- Use weekly simulation meetings for updates, as many high-priority tasks involve software developments with tracking detector designs https://indico.bnl.gov/categoryDisplay.py?categId=88
- Goal oriented irregular events:
 - New event: this meeting today
 - MAPS+HF-jet joint workfests, e.g. Jan 5-7 2017 @ Santa Fe
 - Pre-collaboration meeting work-fest on May 16-17, 2016
 - Initial TG meeting on Apr 22, 2016

Delivered plots for MAPS pre-proposal

B-jet tagging in p+p

B-jet tagging in 10%C Au+Au

Tagging b-jets in sPHENIX

Exploring three leading methods for sPHENIX *b*-jets identification and crosscheck

- Multiple large DCA tracks
- Secondary vertex and kinematic fits
- B-meson tagging via semi-leptonic decay or direct invariant mass reconstruction
 - Need volunteer

Past activities:

b-jet tagging - High DCA track counting

Short history

- Dennis and Haiwang implemented track counting tagger in the full Geant4 simulation
- Haiwang produced projection plot in Geant4 simulation.
- Systematically validating the Geant4-based track fit procedure, in order to optimize 3-D DCA and likelihood

Next

- Reevaluate in HI background with HIJING embedding
- Optimizing cuts to suppress fake off-vertex tracks

Past activities:

b-jet tagging – Secondary vertex

- Short history
 - Haiwang developed new Kalman filter (GenFit2) with vertex finder integration (RAVE)
 - Sanghoon implemented Secondary vertex finder in jet
 - p+p performance plot used in tracking review
- Next:
 - Fixing a refitting inefficiency issue (further improve p+p results)
 - Reevaluate in HI background with HIJING embedding

Secondary vertex *b*-tagger

From Sanghoon's talk https://indico.bnl.gov/conferenceDisplay.py?confld=1928

Secondary vertex kinematics fits Data driven *b*-jet purity estimation

An vulnerability (opportunity) of HF-probes

b-quark jet selection: b-jet correlation

- Event topology to select b-quark jet
 - b-jet in correlation with opposite-going B-hadron, b-jet and photon
- sPHENIX provides good acceptance on b-di-jet and b-jet – non-prompt-D correlations
- Helps on purity of jet and b-tagging too
- Near term goals: fast-sim projections

b-jet + B-hadron, model

b di-jet, CMS 2016

di-jet acceptance in sPHENIX

lorh

New studies for Di-b-jet asymmetry With reference to recent CMS TN

CMS-HIN-16-005

sPHENIX fast sim.

Work started in Jan-2017 workfest sPHENIX di-bjet asymmetry,

- Darren McGlinchey (UCB)

Di-b-jet asymmetry: sPHENIX projection

CMS-HIN-16-005, also Yen-Jie's talk July 2016

- By Darren McGlinchey (UCB)
- Pythia8 (HardQCDBBar)
- Fast sim. (truth jets)
- Assuming di-b-jet tagging perf.
 - Efficiency 50%
 - High purity (100%)
- $R_{AA} = 0.6$ assumed
- sPHENIX proposal lumi. (100B MB)
 - For p + p use integrated luminosity of $\int \mathcal{L}_{pp} dt = 175 \text{ pb}^{-1}$
 - For 0-10% Au+Au use n+n equivilent luminosity of $\int \mathcal{L}_{nn} dt = N_{\text{evi}}^{\text{Au}} * \langle N_{\text{coll}} \rangle / \sigma_{nn} = 10 \text{B} \times 962/42 \text{mb} = 229 \text{ pb}^{-1}$

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 $x_j = p_{T_2} / p_{T_1}$

More ideas on *b*-quark jet selection? Non-prompt D-meson tagging

➤ Xuan Li (LANL) also started investigation of correlation of b-jet in correlation of B-meson or a non-prompt D-meson (→pi + K)

In jet cone: b->B hadron fragmentation and modification in medium

In opposite hemisphere: suppression of $g/q \rightarrow b\overline{b}$ jet, enhance b-jet tagging purity, p_T-imbalance and constraint energy loss.

These initial investigations may lead in a set of projection plots for the

full proposal

Preliminary study
Updates in simulation meetings

More ideas on *b*-quark jet selection? Jet structure tools

- Jet structure tool developed in HEP adapted in HI field
- ▶ Jet grooming observable z_g to separate b-quark jet and $g/q \rightarrow b\bar{b}$ jet?
- Mid-term goals: in collaborate with JS TG in developing grooming tools – volunteer welcomed!

Task planning on HF-jet

- Realistic implementation in Geant4
 - In verification: implement ladder structure in simulation Tony F., Gaku M.
 - Need help: digitization of MAPS detector (charge diffusion model, comparison to data, etc.)
- Reconstruction algorithm:
 - By summer (?): complete the pile-up simulation framework Mike M., Yorito Y.
 - By summer (?): update pattern recognition in the tracking software Tony forming task force
- b-jet tagging algorithm
 - By summer: Full calorimetry simulation with secondary vertexing tagger Sanghoon L.
 - By summer: Full calorimetry simulation with high-DCA track counting Haiwang Y.
 - Help needed: soft-lepton tagging, likelihood analysis
- Inclusive b-jet R_{AA}
 - By Apr (?): Update theory curve to RHIC energy Cesar da S. contact Vitev group
- di-bjet asymmetry
 - By Apr: Apply di-jet purity to projection Darren M., Haiwang Y.
- ▶ b-jet-non-prompt-D asymmetry:
 - By Apr: Produce uncertainty projection in fast simulation Xuan L.
- b-jet substructure tools.
 - Need help: exercise jet-grooming algorithm, FF. in collaboration with Jet Structure group
- c-quark jet: charm fragmentation, completes mass hierarchy
 - Need help: try out prompt-D tagger (ALI-PREL-117896) and Corrected Secondary vertex (arXiv:1612.08972)

+ discussion in the meeting

Extra information

From Christof R.

https://indico.bnl.gov/conferenceDispla

y.py?confld=2683

Alternate Detector Configurations

- Alternate detector configurations
 - Default -> 3 MAPS Layers, 4 ITT Layers, 40 Layers TPC
 - Light-> 2 MAPS Layers, 2 ITT Layers to save material budget
 - · Slight performance advantage below 10GeV due to lower material budget
 - Minimal -> 1 Maps Layer, 2 ITT Layers, 40 Layers TPC
 - Significant performance decrease (remember 95% hit efficiency per layer)
 - No Maps
 - · Likely death sentence for Heavy Flavor program...

Christof Roland

8

sPhenix Simulation Meeting Mar 07 2016

vtx 5.0um, its 22um, tpc drift dependent resol-

Full Detector, 3 MAPS, 4 ITTS, TPC 40 Layers

Light 2 MAPS, 2 ITT, 40 Lav. TPC

No MAPS, 4 ITT, 40 Lay. TPC

η

Minimal, 1 MAP, 2 ITT, 40 Lav. TPC

What affects performance curves

Detector requirement on MAPS/MVTX

- Caveats: there are trade-offs between tail/efficiency/DCA. Important final check is b-jet tagging performance working point: reaching 40% efficiency and 40% purity.
- Low fake high-DCA tail background
 - b-jets are rare (0.1%-1%) object identified via displaced vertex, therefore sensitive to rare large-DCA fake track background.
 - The working point of B-jet tagger is few-sigma above DCA peak, and
 - Possible specification: true large DCA track/fake large DCA track > 1:1 1:few for DCA tail integrated from 2-sigma to 1mm
- Tracking efficiency
 - Efficiency for multi-track tagging algorithm is sensitive to (tracking efficiency)^N
 - Possible specification: Require 60% (HFT KPP) 75% (HFT UPP) single track efficiency p_T>1 GeV/c
- DCA
 - B-jet DCA requirement is relatively moderate
 - Requirement: DCA<100 um @ p_T>4 GeV/c (sPHENIX proposal)
- DAQ output event rate
 - Statistical limited measurement
 - B-jets are jet-structure study based on inclusive jets, require large jetsample rate
 - Requirement: 15 kHz trigger rate to match sPHENIX DAQ

b-jet tagging – High DCA track counting Update in HIJING embedding:

- Haiwang Yu (NMSU) initiated the study by embedding pythia-8 MB jets into 0-4 fm HIJING background, then go through full tracking Geant4 simulation and reconstruction

- Two configuration in study
 - Cylindrically modelled MAPS + INTT + TPC (target configuration)
 - 7-layers of MAPS (Same MAPS inner tracker + MAPS outer tracker) as reference of ultimate tracking configuration of very low fake tracking rate but same physics background.

7-layer MAPS, $p_T>1$ GeV/c

b-jet tagging – High DCA track counting Update in HIJING embedding:

- Although still in debugging, initial result show 2/3 good tracks reconstructed comparing MAPS+IT+TPC with 7-layer MAPS
- This has implication on b-jet tagging efficiency of reduced signal efficiency
- Preliminary results just made minimal
- Space of improvement: tune cuts, investigating source of large DCA peak and loss of efficiency. Meanwhile, accumulate higher statistics in simulation

More notes on details:

Pythia-8 MB jet Embed to 0-4 fm Au+Au Full tracking in Geant4 and reconstruction

Analysis further require

- Track p_T>1 GeV/c
- Track Chi2/ndof <1.5

Past activities:

b-jet tagging – Secondary vertex

Short history

- Haiwang developed new Kalman filter (GenFit2) with vertex finder integration (RAVE)
- Sanghoon implemented Secondary vertex finder in jet
- p+p performance plot used in tracking review

Next:

- Fixing a refitting inefficiency issue (further improve p+p results)
- Reevaluate in HI background with HIJING embedding

Secondary vertex *b*-tagger

From Sanghoon's talk https://indico.bnl.gov/conferenceDisplay.py?confld=1928

Secondary vertex kinematics fits

Data driven *b*-jet purity estimation

b-tagging performance in HI

b-jet tagging – High DCA track counting Updates and HIJING embedding:

- Sanghoon and Haiwang found an inefficiency in track fitting software (GenFit2, used by expert only), fix submitted. Analysis show improved performance in p+p
- Sanghoon also started embedding study with p+p jets embedded in central HIJING events.
- Working on results for the target tracking configuration of MAPS+IT+TPC

Starting HIJING embedding Simulated using 7-layer-MAPS

Fitter-inefficiency fix

Embedding in central HIJING

DCAxy shape

Track selection

Track selection cont'd

MAPS+INTT+TPC

7-Layer MAPS

b-jet simulations, drawing to Geant4

Luminosity counting

- Current RAA plot assumed 200B MB Au+Au in |z|<10cm</p>
 - 100B MB Au+Au in |z|<10cm assumed for sPHENIX proposal
 - 200B MB Au+Au in |z|<10cm following updated CAD projection
 - Will follow the final luminosity number determined by collaboration for QM17 -Gunther
- ► For MAPS proposal, we need updated model R_{AA} for RHIC energy

New plots from track counting

- Answering two main questions in this workfest:
- How we do in HIJING
- What if we use other technology

b-quark jet selection:b-jet correlation

- Event topology to select b-quark jet
 - b-jet in correlation with opposite-going B-hadron, b-jet and photon
- sPHENIX provides good acceptance on b-di-jet and b-jet – non-prompt-D correlations
- Helps on purity of jet and b-tagging too
- Near term goals: fast-sim projection

b-jet + B-hadron, model

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b di-jet, CMS 2016

Inclusive di-jet acceptance in sPHENIX

lorh

New plots from Di-b-jet asymmetry

Started in workfest: sPHENIX di-bjet asymmetry,
This plot is preview: fast-sim, hardQCD-B, NOT scaled to lumi
- Darren McGlinchey (UCB)

Silicon ladder setup

- Implementing realist geometry in laddered silicon detectors
- Base-code in nightly build
- Tuning on going for
 - INTT ladder thickness
 - Kalman filter to interface with geometry

Simulation resources

- Currently we separate jet and b-tagging simulations to help speed up simulation. Need to verify factorization in the next stage
- Simulation setup used in analysis:
 - Tracking simulation in p+p in MAPS+IT+TPC (few minute / event)
 - Tracking simulation in HIJING + embedding for 7-layer MAPS (few minute / event, used for initial tunings) and for MAPS+IT+TPC (1hour / event, use for performance plots)
- In developments
 - Silicon detectors in ladder geometry <- make available soon?
 - Pile up simulation <- make available soon?
 - TPC distortion corrections

Jet flavor definition tools

- Unifying truth definition and jet sample generations
 - Based on Dennis' work defining a truth tagging module run on MB events to synchronize B-jet definition and yield between analyzers
 - Two options provided in defining truth jet by matching b-quark in jet (CMS definition) or by matching B-hadron in jet (proposal definition)
 - Available on GitHub: https://github.com/sPHENIX-Collaboration/analysis/tree/master/HF-Jet/TruthGeneration
- In collaboration with TS TG: Plan to be generalized to light-parton tagging and parton interaction channel categorizations
- Mid-term goal: cross checked with data and NLO generators

Jet finding and fake rejections

- HF-jet are based on jet, relying on jet finding development lead by JS TG
 - \circ Emphasis on purity and reach to lowest-possible-p_T jet, where mass effect is maximized
 - No statistics for *b*-jet beyond $p_T > 50 \text{ GeV/c}$
- HF-jet specific: response in detector for b-favored jet, unfolding and media modification
 - Require join study with JS TG in term of experience and toolkit developments

HF-jet TG high priority longer-term tasks

- Goal: realistic study of HF jet performance in sPHENIX simulation and reconstruction.
- High priority development tasks: (current developers and your help/ideas welcomed!)
 - Realistic implementation in Geant4
 - Tony F./Gaku M./Chris P.: merged to main repository last week. Validating for general use.
 - Generalized Kalman filter
 - Haiwang Y./Chris P., ready, used in analysis, improving details
 - Multi-vertexing/b-tagging via secondary vertexing in jet
 - Sanghoon L./Haiwang Y.: ready, used in analysis, push towards HI analysis
 - b-jet tagging: Track Counting
 - Haiwang Y./Dennis P.: ready, used in analysis, push towards 3-D DCA and HI analysis
 - b-jet tagging: Soft Lepton Tagging, exploratory
 - b-quark jet selection: B-Meson Tagging. Exploratory, volunteers from LANL and LBNL
- Area of overlapping with to other TG groups
 - JS TG: Jet detection / modern jet structure tools / event and jet flavor tagger
 - Quarkonia TG: tracking development/ HF-meson detection

Highlight recent activities: DCA_x

- Both methods highly depending on quality of DCA
- Haiwang et al developing capable Kalman filter (GenFit2), expand to DCA_{3D} and use it to validate
- Not only-MAPS matters for DCA
 - Consider use z-sensitive strip in subset layers of INTT?
 - Important to develop and verification as a whole system downstream of clustering

Small (but systematic) bias in TPC cluster z TPC software group is fixing this problem

Non-negligible bias in DCAz

From Haiwang's talk https://indico.bnl.gov/conferenceDisplay.py?confld=1940

Kalman

fit with

MAPS

b-jet fraction in LUND family estimation

Lund String, Eur. Phys. J. C 17, 137–161 (2000)

Cross section from pythia8

B-jet tagging

Decay lepton tagging

- None-photonic lepton has been a successful tool in studying heavy quark behavior in QGP
- Given a jet detected, lepton tagging in or near the jet cone could enhance HF jet fraction due to larger fraction of B(->d)->e decay than h->e decays.
 - Benefit:
 - Not necessarily require a DCA capability. No additional sPHENIX detector required
 - (Largely) orthogonal to and cross check life-time-based B tagging: e.g. DCA-track-counting and Secondary vertex mass methods
 - Cost: B->e branching ratio (~20%), electron identification efficiency, (b-tagging efficiency)

Challenge:

- Exploring possibility @ RHIC energy
- Signal/background ratio and
- Optimization both in $j_{T,e}$ and DCA_e
- Statistics

Decay lepton tagging

- CMS studies (muon tagging)

sPHENIX tracking simulation and reconstruction chain

- ▶ A chain of full detector Geant4 simulation and reconstruction software developed for sPHENIX, used in current detector and physics performance projection
- Limitations in current software that need to be evolved for the next stage
- Many new developments hold back before the Septtracking review. Now to be coordinated to be made default.

https://indico.bnl.gov/conferenceDisplay.py?confld=1930